
1

The Power of C++:
The Making of TMON 3.0

Waldemar Horwat
Presented at MacHack '90
Copyright © 1990 Waldemar Horwat

Abstract

For several years C and Pascal have been viewed as roughly equivalent Macintosh programming languages,
differing in syntax but not expressiveness. This, however, is not the case with Object Pascal and C++; C++ is a
fundamentally more expressive language than Object Pascal or C. I will demonstrate this by exploring C++ in
depth along one particular dimension—defining seamless language extensions. These extensions include a
complex number library, a file type, an unlimited-length string package, and a garbage collector. Similar
extensions were used in the design of TMON 3.0.

As these extensions are explored in depth, it becomes apparent that they provide a substantial increase of
reliability and decrease in debugging effort for complex programs. However, to reap these benefits, one must
be familiar with C++ and willing to use it for an entire project.

1. Introduction

Programming Paradigms
Although few Macintosh programmers think about it
much, most of them are using a certain, limited
programming paradigm when writing software. The
procedural paradigm is most frequently used on the
Macintosh, as it is encouraged by the use of
traditional programming languages such as Pascal, C,
or assembly language (when used the “ordinary”
way). Moreover, all of the interfaces in Inside
Macintosh also follow the procedural style.
In the procedural paradigm, the programmer views
the world as consisting of procedures and functions
which call other procedures and functions, passing
values and data structures as arguments. The
programmer is burdened with maintaining every
aspect of these data structures.
Although the procedural programming paradigm is a
good one for many applications, it is by no means
the only one, nor necessarily the best one for a
particular application. At this time Prolog [10],
Common Lisp [9], and many specialty languages
offer different paradigms, often several combined in
the same language. In contrast, several years ago
Applesoft BASIC and its peers defined the dominant
programming paradigm for beginning personal
computer users.

Applesoft BASIC was several levels below the
procedural programming paradigm, for it lacked good
data structuring abilities such as Pascal's records or
C's structures. Furthermore, Applesoft BASIC lacked
procedures and functions. It was possible to GOSUB
to a common piece of code, but this was more of a
macro than a procedure—there were no provisions
for local variables, and passing arguments was
cumbersome at best. Finally, Applesoft BASIC was an
unstructured language at a time when the structured
programming vs. GOTO debate was winding down.
Structured programming won the debate—at this
time virtually every new programming language uses
structured control flow constructs such as WHILE and
REPEAT loops and IF/THEN/ELSE statements.
Nevertheless, not so long ago in Applesoft BASIC,
GOTOs were the main means for branching in a
program.
I believe that in ten years we will look upon the
current programming tools, languages, and
paradigms from the same point of view as we now
view Applesoft BASIC. I do not know which paradigm
will emerge as the dominant one in the year 2000,
but chances are it already exists today. Object-
oriented programming is a good starting point, but it
is definitely not

1

2
enough for tomorrow's software projects. Other
paradigms, especially parallel ones such as the ones
that I described in a paper presented at last year's
MacHack [4], posses some advantages.

Development of C++
C++ [11] [12] is an object-oriented programming
language developed by Bjarne Stroustrup based on C
[5]. Two of the main goals of the development of C+
+ were to bring the level of the language up to the
problem being solved and to ease development of
large programs. C++ achieves these goals by
introducing the object-oriented paradigm, along with
other features, without sacrificing efficiency. The fact
that C++ is as efficient as C may be the reason for
C++'s wide acceptance where other object-oriented
languages such as SmallTalk have not done as well.
C++ gradually evolved over the last decade. The
latest revision of the language is version 2.0 [12],
which will be the version used in this paper; this is
also the version provided in the current MPW C++
package. C++ is still evolving, and it will likely
change in the future.

The Power of C++
The complexity of C++ approaches that of Ada [1],
and my goal here is to teach neither C++ nor object-
oriented programming. Instead, I will explore the C+
+ language along one particular dimension that I
found especially useful—defining increasingly more
sophisticated “extensions” to the language. To
ensure that these extensions are practical, I will use
code similar to that found in TMON 3.0 for the
examples that follow.
One view of programming holds that writing a
program in a structured language consists of
repeatedly adding extensions (procedures, functions,
types, macros, etc.) to the base language until the
extended language allows the problem to be solved
in a single main procedure. Of course, some
languages are better than others in facilitating
extensions, and, as I will try to show, among the
commonly used Macintosh compiled languages, C++
is probably the best.
This paper is intended for both intermediate and
experienced C++ users and for C and Pascal
programmers curious about C++. I hope that current
C++ users will find the examples here useful and will
expand their horizons about what the C++ language
can do for them. I also hope that some of the

programmers considering using C++ will find here
reasons to learn and use C++. What I am about to
describe simply cannot be done in any practical
sense in Pascal, Object Pascal, or C.

2. Creating a New Type
The first extension example is simple: Extend the
language to allow the use of complex numbers in
arithmetic expressions. A complex number library
can be written in Pascal, Object Pascal, C, or C++,
but only C++ makes it easy and natural to use, and,
moreover, C++'s is probably the most efficient.
In fact, MPW C++ provides a complex.h library (based
on AT&T's complex number library) along with the
standard libraries. I will use this library to illustrate
how specific C++ features make it easy to use. In C,
a library designer is restricted to defining structures
and functions that operate on them. On the other
hand, it is possible for a C++ library designer to
create the appearance that the type he is defining is
built into the language—C++ types can be “black
boxes” with hidden members, the built-in operators
and functions can be overloaded to operate on the
new types, and automatic coercions can be specified
between types. Furthermore, all of these can be
done efficiently, without unnecessary overheads.
When reading this section, please refer to appendix A
for one possible declaration of the C and C++
complex.h libraries.

Example
After including the complex.h library, to define a C++
procedure that returns the two roots of a quadratic
equation, one would write:
// Solve a*x*x+b*x+c==0.
// root1 and root2 are the two roots.
void solveQuadratic(complex a, complex b,
 complex c, complex &root1, complex &root2)
 {
 complex d=sqrt(sqr(b)-4*a*c);
 root1=(d-b)/(2*a);
 root2=(d+b)/(-2*a);
 }

To solve x2+(7+3i)x+17=0, one would use:

2

3
solveQuadratic(1,complex(7,3),17,root1,root2)

By comparison, to accomplish the same thing in C1,
one would need:
/* Solve a*x*x+b*x+c==0. */
/* root1 and root2 are the two roots. */
void solveQuadratic(complex a, complex b, complex
c, complex *root1, complex *root2)
 {
 complex d,constant;

 constant.re=4;
 /* Notice broken data abstraction here; */
 constant.im=0;
 /* constant's fields have to be accessed
 directly. */
 d=csqrt(csub(cmul(b,b),cmul(cmul(constant
 ,a),c)));
 *root1=cdiv(csub(d,b),cadd(a,a));
 constant.re=-2;
 *root2=cdiv(cadd(d,b),cmul(constant,a));
 }

To solve x2+(7+3i)x+17=0 in C, one would use:
complex a,b,c;
a.re=1;
a.im=0;
b.re=7;
b.im=3;
c.re=17;
c.im=0;
solveQuadratic(a,b,c,&root1,&root2);

The C++ program is more readable and easier to
modify, in addition to being more efficient. The C++
features that bring this about include good support
for data abstractions, type coercion primitives,
overloaded functions and operators, and inline
functions. These features are described below.

Data Abstraction
An important difference between the two programs is
that the C++ programmer need not be aware of the
internal structure of a complex object. It happens to
be represented as two extended numbers, but the
user is not aware of this; in fact, the representation
could be changed to use polar coordinates or a
hybrid using rectangular and/or polar coordinates
without affecting the user program2. This is the
essence of data abstraction.

On the other hand, the C programmer is aware of the
representation of a complex object—a structure
containing the re and im extended fields—and, in
fact, he has to manipulate it directly to initialize a
complex variable to a real constant. This hinders any
future changes to the structure of complex objects.
One might argue that the library ought to provide a C
function that initializes a complex variable to a real
constant; unfortunately, such a function would
impose excessive calling overhead for such a simple
operation. A #define macro to initialize a complex
variable would be more efficient, but #define macros
have numerous scoping, aliasing, and redundant
evaluation problems of their own.

Type Coercion
The C language performs some automatic type
coercions on built-in types. For example, a single
can be passed to a function that expects an
extended argument, and a char can be used in an
expression as an int. However, there are no
automatic means to convert between user-defined
types or between user-defined types and built-in
types.
On the other hand, C++ lets the designer of a new
type specify coercions to and from that type. This
capability is valuable in many instances, as it lets
user-defined types behave much like built-in ones.
The complex.h library defines a coercion from an
extended to a complex value by providing a
constructor (described later) that constructs a
complex number from an extended floating point
number. The constructor performs the obvious
mapping—the real number is converted to a complex
number with the given real part and zero imaginary
part.
The coercion is applied automatically whenever
appropriate3. Thus, an extended value can be
assigned to a complex variable; the coercion
constructor will be called automatically. An int can
also be stored in a complex variable; it will first be
converted to extended and then to complex4. An
integer can also be passed to a function that expects
a complex argument, as is seen in the example
above. The C++ version of solveQuadratic is called

1Also using the complex.h library supplied with MPW.
2I am ignoring here the roundoff and overflow issues that appear in some numerical programs. It is in general difficult to modify numerical
algorithms without having some effect on rounding errors.
3There are some restrictions about ambiguous or multiple coercions, but they do not cause problems in practice.
4As will be seen later, many of these coercions are only conceptual and done by the compiler; there is usually no run-time penalty for coercing
constants and for inlined coercions.

3

4
with the arguments 1 and 17, which are coerced to
type complex before the function is called. This
makes the pro

4

5
gram much more readable than the C version,
without sacrificing efficiency.
In addition to the above real-to-complex constructor,
the complex.h library also declares a complex object
constructor that takes two extended numbers to
specify the real and imaginary parts. This
constructor is seen in use as the second argument
for solveQuadratic: complex(7,3). Coercions
which take more than one argument must be
specified explicitly.

Overloading
Another indispensable feature of C++ in defining
types such as complex is the ability to overload
operators and function names. The complex.h library
specifies functions which define the behaviors of
such common C operators as +, -, *, /, +=, -=, *=,
and /= when at least one of their arguments is
complex. In addition, the library overloads a number
of functions such as sqrt, sin, cos, atan, and exp by
defining the behavior of these functions with complex
arguments. Of course, the standard definitions of
these overloaded operators and functions are still
available when their arguments are not complex.

It is true that anything that can be done with
overloaded functions can also be done without them,
simply by picking unique names for all functions.
However, this is often cumbersome, as the
programmer has to remember the names of
overloaded functions for all possible combinations of
arguments. For example, the complex.h library
specifies the behavior of * when both arguments are
complex, when the first argument is complex and the
second extended, and when the first argument is
extended and the second complex5 (in addition, of
course, to C++'s built-in behavior of * when both
arguments are extended). Three C functions with
needlessly different names would have to be used to
provide the same functionality, whereas in C++ all
the programmer has to remember is that the usual
multiplication operator * can now be used to multiply
complex numbers.

Efficiency
With some work, the type coercion and function and
operator overloading difficulties could be
circumvented in C, at the expense of much less

readable programs (compare the C and C++ versions
of the example above). However, one more
advantage of C is that many of the simple coercions
and operations on complex values can be done
without the overhead of a function call. C++
functions and constructors can be specified inline,
requesting that that their code be duplicated
wherever they are called instead of using a function
call. For simple operations such as constructing a
complex number out of an extended one or for
adding two complex numbers, this inlining facility
can result in significant time savings. Furthermore,
an optimizing compiler can often perform a much
better optimization job on an inlined function than on
one that is compiled out-of-line.

Summary
Together, the data abstraction, type coercion,
overloading, and inlining facilities of C++ combine to
let a designer seamlessly extend the language by
adding types to it that are indistinguishable from
built-in ones. A reader of the C++ example above
who is not familiar with C and C++ might assume
that complex numbers are built into C++. In fact,
with inline functions and a good optimizing compiler,
an analysis of the code produced would support this
illusion, as most complex value operations would be
done inline. Thus, the above four areas of C++
combine to give programmers the power to extend
the language—a power not present to the same
degree in C, Pascal, or Object Pascal.

Other Examples
Complex numbers are not the only example of a
useful language extension that can be seamlessly
integrated into C++. [6] describes a library defining
associative arrays—arrays that can be indexed by
objects of non-cardinal types. For example, one can
declare an array a indexed by strings, and then refer
to a["this"] and a["whatever string you like"].
Interestingly enough, a straightforward
reimplementation of the UNIX topological sort
program tsort using associative arrays reduced that
program to a trivial one-procedure program that
actually

5Strictly speaking, only the first form (complex*complex) is necessary, as extended values will be automatically coerced to complex
ones; however, the other two forms (complex*extended and extended*complex) are provided for efficiency.

5

6
ran faster than the conventional tsort because of
the better algorithms used6.

3. Constructors and
Destructors
Unlike complex values in the previous section, many
useful objects require initialization and destruction
operations before and after they are used.
Nevertheless, neither (Object) Pascal nor C provides
any facilities for initializing and destroying user-
defined objects. Since many complicated objects do
need initialization and deallocation, programmers
have defined conventions for doing these tasks. For
example, many MacApp classes provide nontrivial
initialization and destruction methods for their
objects. Whenever a procedure creates a MacApp
object of such a class, it must subsequently call the
initialization method before it does anything else with
the object. Similarly, to make sure that storage is
properly deallocated, the procedure should call the
Free method on every object that is to be destroyed.

Software conventions such as the one above are fine
for simple tasks, but they do lead to errors and
become unmanageable for complicated programs
and object structures. Is it really feasible to ensure
that Free is called on every object that should be
freed, even if procedures return prematurely because
of errors? My experience with this problem has been
that unless a language provides support for
automatic deallocation of objects, such deallocation
bugs will remain in programs long after they have
been written, debugged, and tested, especially if the
error conditions that trigger the bugs are infrequent.
C++ offers a better solution to this problem through
the use constructors and destructors. A constructor
is a procedure associated with a class that is called
whenever an instance object of that class is created.
A destructor is a procedure that is called whenever
any such instance object is destroyed. Constructors
were mentioned briefly in the previous section,
where they were used for type coercion.
Constructors and destructors are not available in
(Object) Pascal or C, although Pascal does use
constructors internally to make sure that local FILE
variables are properly initialized.
In C++, constructors and destructors are called

regardless of whether their instance objects are local
variables (stored on the stack) or dynamic heap
objects (stored on the heap).

The FileRec Class
The listing below contains a sketch of an
implementation of a simple FileRec class designed
to keep track of a file to which data is being
appended. A modified version of this class is used in
TMON 3.0 to support printing.
// Class declaration
class FileRec {
private:
 HParamBlockRec pRec;
 bool isOpen;

public:
 FileRec();
 ~FileRec();

 OSErr open(short vRefNum, String fileName);
 OSErr close();

 OSErr write(char *);
 };

//Class implementation

//Constructor
FileRec::FileRec()
 {
 isOpen=0;
 }

//Destructor
FileRec::~FileRec()
 {
 close();
 }

OSErr FileRec::open(short vRefNum,
 String fileName)
 {
 OSErr err;

 if (isOpen) return errIsAlreadyOpen;
 if (err=createFile('TEXT','MPS ',
 vRefNum,fileName))
 return err;
 setupFileParamBlock(&pRec,vRefNum,
 fileName);
 pRec.ioParam.ioPermssn=fsWrPerm;

6Of course, the same algorithms could be applied to improve the performance of the conventional C tsort program, but this would require
more programmer effort.

6

7
 pRec.ioParam.ioMisc=0;
 if (err=PBHOpen(&pRec,0)) return err;
 isOpen=1;
 pRec.ioParam.ioPosMode=fsFromLEOF;
 pRec.ioParam.ioPosOffset=0;
 return PBSetFPos((ParamBlockRec *)&pRec,
 0);
 }

OSErr FileRec::close()
 {
 OSErr err,err2;

 if (!isOpen) return 0;
 err=PBClose((ParamBlockRec *)&pRec,0);
 isOpen=0;
 err2=PBFlushVol((ParamBlockRec *)&pRec,
 0);
 if (!err) err=err2;
 return err;
 }

OSErr FileRec::write(char *line)
 {
 if (!isOpen) return errIsNotOpen;
 pRec.ioParam.ioBuffer=line;
 pRec.ioParam.ioReqCount=strlen(line);
 pRec.ioParam.ioPosMode=fsAtMark;
 return PBWrite((ParamBlockRec *)&pRec,0);
 }

The function below shows an example of the use of a
FileRec.

OSErr fileRecUser(short vRefNum)
 {
 OSErr err;
 FileRec file1;
 char str[256];
 int i;

 err=file1.open("MyFile",vRefNum);
 if (err) return err;
 err=file1.write("A disassembly of ROM "
 "follows\n");
 if (err) return err;
 for (i=0x40800000; i<0x4087FFFF;
 i+=instLength(i))
 {
 err=disassemble(i,str);
 if (err) return err;
 err=file1.write(str);
 if (err) return err;
 if (userInterrupt()) return -1;
 }
 err=file1.close();
 printf("Done!\n");
 return err;
 }

The fileRecUser function first opens a file called
“MyFile”, and then writes a disassembly of a ROM
into it. Any errors are immediately reported.
The FileRec constructor is called on the file1 local
variable before the fileRecUser function begins
executing, and simply sets the isOpen variable to
false, marking file1 as closed. The FileRec
destructor is called when fileRecUser finishes. That
destructor calls the close method, which checks
whether the file is still open and, if so, closes it.
Thus, file1 is closed when the fileRecUser function
returns, regardless of whether fileRecUser returns
successfully at the end or via one of the internal
return statements that caught an error.

The design of the FileRec class ensures two
invariants:
• An open FileRec is always closed whenever it is
deallocated.
• A FileRec file is closed only if it was open before,
and it is closed exactly once.
Both of these conditions are crucial, and having the
FileRec class enforce them improves a program's
robustness. If the first condition were violated, a file
might remain open for too long, which would prevent
it from being opened again and might cause loss of
data because the last block of data might not be
flushed to the disk7. The consequences of violating

7Several commercial Macintosh programs have bugs that cause them to forget to close files when errors occur.
7

8
the second condition could be even more serious—it
has been documented that closing a file twice or
closing a file without successfully opening it first can
erase a disk's directory! Again, the design of the
FileRec class ensures that this catastrophic error will
never happen; the user of the FileRec class does not
have to worry about either of these problems and
can, in fact, call the close method many times or not
at all without adverse consequences.

Summary
Judicious use of constructors and destructors can
greatly reduce the number of initialization and
deallocation errors in a program. All objects can
come to life initialized, and they can be automatically
deallocated when they are no longer needed. Since
initialization and deallocation errors are both
common and elusive in C and Pascal, the use of C++
can significantly reduce the testing and debugging
time for a program, in addition to freeing the
programmer from the

8

9
burden of worrying about low-level programming
issues.

4. Automatic Garbage
Collection
The previous section introduced the use of
constructors and destructors to initialize and clean
up objects. This section will continue the same
theme, but with a twist: I will demonstrate how it is
possible to efficiently allocate and deallocate objects
that can be copied. The FileRec objects from the
previous section could not be copied because the two
copies would still refer to the same file on the disk,
which does not make much sense. Nevertheless, the
copy operation is essential for many primitive data
types such as strings, infinite precision numbers,
trees, matrices, expressions, and others. In this
section I will describe a simple String class that
permits “transparent” copying.

The String Class
One of the more annoying features of many C
programs is their tendency to impose arbitrary limits
on string lengths. Names, input lines, etc. are often
limited in size, and exceeding the limits causes an
error message at best and anything from a system
crash to memory corruption at worst. A large length
limit might waste memory in most applications yet
still be too small for some purposes. The infamous
Internet worm [8] propagated across the country in
part by exceeding the maximum length of a string.
TMON 3.0 must be as reliable and flexible as
possible, and I could not impose any arbitrary limit
on the length of a string. Most strings are small, but
it is possible that someone might want to examine a
string that is a million bytes long; TMON 3.0 must
handle such a request, as long as it has enough
memory to do so (and if it doesn't, it must say so and
abort the operation gracefully). Moreover, allowing
arbitrary-length strings led to a simplification of
TMON's code—entire files can now be represented as
strings, and printing a window amounts to mostly
concatenating data to a string. A View window in
TMON 3.0 is little more than a string viewer.
One obvious way to store arbitrary-length strings is
as handles on a heap. Unfortunately, manipulating
handles directly is error-prone and tedious. To
remedy this situation, I defined a special C++ String

class to make String manipulation even easier than
it is with fixed-length strings in C.

Operations
The operations defined for Strings include copying,
conversion to and from “standard” C-style strings,
measuring their lengths, extracting characters,
concatenating, and concatenating in place. Copying
is invoked using the = assignment operator. The
[and] brackets are used to extract characters from
Strings, just as for “standard” C-style strings.
Concatenation is represented using the | operator,
and concatenation in place using the |= and ^=
operators.

Examples
Suppose that a and b are Strings containing
"Alyssa" and "Ben", respectively.

length(a) will return 6.

a[2] will return the character 'y'. The [] operation
is bounds-checked, so a[6], a[-17], and a[999] will
all return the null character '\0'.

a|b will return a new String containing
"AllyssaBen" without altering a or b. If there is not
enough memory to allocate a new String, a|b will
return the null string; the String class could be
modified to do something else in this situation.
String c="Cindy" creates a new String variable
and initializes it to "Cindy".

String d=a|", "|b|", and "|c creates a new
String variable and initializes it to
"Alyssa, Ben, and Cindy". Notice how the
standard C-style strings can be mixed with Strings
in expressions.
a=b destroys the previous String in a and assigns
"Ben" to a. The assignment does not involve
copying actual string contents—both a and b now
point to the same StringData record (defined later).

a|=c concatenates "Cindy" to a, thereby placing
"BenCindy" in a. b is not altered—it still contains
"Ben".

a.substr(2,4) returns "nCin"—a new String
containing four characters from a starting at offset 2.

9

10
a.cString() returns a pointer to a C string (i.e. char
*) containing the characters "BenCindy" in a. The C
string is located in an unlocked handle, so it should
be copied before any routine that can move the heap
is called.

Copying Strings
The previous section demonstrated how it is possible
to arrange for a String variable to be initialized
when it is created and deallocated when it is
destroyed. However, the fact that Strings can be
copied leads to complications. The simple approach
to dealing with the assignment a=b where a and b
are Strings would be to copy String b's data to
String a. I rejected this approach because it is both
slow and unnecessarily wastes memory. Instead, I
chose to keep a reference count in each String's
data that indicates how many String variables refer
to it. When assigning String b to a in a=b, the
reference count of String b is incremented by one
(because String a now points to it too), and String
a's reference count is decremented by one. A
String's data is deallocated if and only if its
reference count reaches zero, for then there are no
more references to it.
A String is just a handle to a structure containing
the reference count and the actual string data. It is
declared as
struct StringData
 {
 int refCount;
 char str[1]; //Variable length
 };

class String
 {
private:
 StringData **data;

 //operations go here.
 };

At the beginning of the series of examples above, the
String variables a and b were in the following state8:

a

String
data

StringData
refCount
str

1
"Alyssa"

b

String
data

StringData
refCount
str

1
"Ben"

After the assignment a=b, the variables changed to:

a

String
data

b

String
data

StringData
refCount
str

2
"Ben"

After a|=c, the variables changed to:

a

String
data

StringData
refCount
str

1
"BenCindy"

b

String
data

StringData
refCount
str

1
"Ben"

Altering Strings
The String class defines the operations ^= and |=
that allow Strings to be modified. These operators
modify the StringData in-place whenever possible.
However, since many String variables can point to
the same data, the data may have to be copied
before it is altered because any modifications should
only be visible through the one String variable to
which the modification is applied. Thus, when a|=c
was done in the examples above, a's StringData
had to be copied because b was also pointing to it.
The copy would not have been necessary had no
other variable pointed to a's StringData.

8The arrows in these figures represent handles, not pointers.
10

11

Garbage Collection
The idea of using reference counts to decide when
objects should be deallocated is known as reference-
counting garbage collection. This scheme is
incremental, in that it does not exhibit the long
pauses encountered with some other forms of
garbage collection. Moreover, reference-counting
garbage collection is guaranteed to deallocate
objects as soon as is possible as long as no cyclical
structures are allocated. Since Strings do not
contain any pointers in their data, this condition is
trivially satisfied.
In order to correctly implement garbage collection,
the String class designer must be able to override
C++'s default behavior on assignment and copying
of String objects in order to properly adjust the
reference counts. Fortunately, this is easy in C++,
whereas it is impossible in C or Pascal.
C++ objects can be copied in the following
situations:
1. Initialization of a new local or heap variable using
an existing value (i.e. String a=b for initializing the
local variable a or String *a=new String(b) for
allocating a String variable on the heap and storing
a pointer to it in a).

2. Assignment of an expression to a variable (i.e.
a=b or myStruct->a=b).

3. Passing a value as a parameter to a function (i.e.
length(a)).

4. Returning a value from a function.
Furthermore, the above situations also apply if a
structure including String fields is initialized,
assigned, passed to a function, or returned9.
In situations 1, 3, and 4, a String is stored into a
new variable that has not been initialized, so C++
calls a special String constructor, which takes
another String as an argument. By providing this
constructor, it is possible to increment the String's
reference count appropriately.
In situation 2, a String is stored into a variable that
already contains a String, so the reference count of
the old String must be decremented before the new
String is stored in the destination variable and its

reference count incremented. The String class does
this by overriding the assignment operator
operator= for objects of type String.

Finally, the String class takes care of simple String
creation and deallocation using constructors and
destructors as described in the previous section.

Implementation
The implementation of the sample String class is
given in appendices B and C. That String class is a
greatly simplified version of one of the main string
classes in TMON 3.0. The full class in TMON 3.0 is
actually derived from a series of storage-managing
ancestor classes. For simplicity I removed automatic
locking, purging, and nontrivial character
manipulation and speed enhancement features from
the String class presented here. Nevertheless, even
the simple String class is useful for practical
applications.

Example
In appendix D, I present a sample MPW tool,
StringSample, that uses the String class to parse a
Macintosh file pathname into its components. There
is no restriction on the length of the original
pathname, other than available memory. The
pathname is separated into a volume name, a
compound directory name, and the leaf file name. In
addition, StringSample proceeds to strip directories off
the compound directory name, giving the complete
list of directories that form the pathname.
StringSample is purely a demonstration of string
manipulations; it makes no calls to the file system,
although it could be used as a component of a class
that does.
Sample output of the StringSample tool is below.
StringSample parses all of its command line
arguments into components. For the last argument,
StringSample lists the access paths to all of the
intermediate directories on the way to the specified
file.
StringSample "LocalFile" ∂
 "MyVolume:MyFile" ∂
 ":LocalDir:Dir2:Dir3::File:"
"LocalFile":
 VolumeName=""
 DirName=":"; FileName="LocalFile"

9One major bug in pre-2.0 C++ was that the compiler did not recognize this possibility, which made it difficult to use Strings or any other
sophisticated objects as fields in structures.

11

12

"MyVolume:MyFile":

12

13
 VolumeName="MyVolume"
 DirName=":"; FileName="MyFile"

":LocalDir:Dir2:Dir3::File:":
 VolumeName=""
 DirName=":LocalDir:Dir2:Dir3::";
 FileName="File"
 DirName=":LocalDir:Dir2:Dir3:";
 FileName=""
 DirName=":LocalDir:Dir2:";
 FileName="Dir3"
 DirName=":LocalDir:"; FileName="Dir2"
 DirName=":"; FileName="LocalDir"

Summary
In this section I presented the String class which
implements low-overhead, robust, and easy-to-use
operations on arbitrary-length strings. The ease of
use and robustness contribute significantly to
programmer productivity by virtually eliminating
storage errors, while contributing to efficiency by not
copying large strings unless necessary—strings are
always allocated and deallocated as needed, nothing
is deallocated early or twice, and there are no
memory leaks.
Setting up a reference-counting garbage collection in
(Object) Pascal or C is not feasible because there are
too many opportunities to make reference-counting
errors, especially during program maintenance. Such
errors are often very hard to find and may remain
dormant for years before striking.

5. Beyond Individual
Types
In this section I will take the automatic garbage
collection theme one step further and sketch how it
can be used to leverage the development of a
program.

Inheritance
Inheritance is the ability to define a new object based
on an existing one by describing the differences. For
example, a Window is basically a GrafPort that
permits additional operations; the Window is said to
inherit from a GrafPort, and the GrafPort is
Window's superclass.

Whereas inheritance had to be faked using type
coercion in Pascal and C, it is a natural capability of

C++ and, in fact, most object-oriented languages. I
will not write about the benefits of inheritance here;
many tutorials have been written on inheritance, and
one need only look at MacApp for examples of
effective uses of inheritance.
Nevertheless, there is one aspect of C++'s
inheritance that is often not appreciated: C++
allows the fields of a class's object to contain values
which are themselves objects of other classes. This
kind of type inclusion is not common in object-
oriented languages and leads to improved efficiency
by reducing the number of storage management
calls needed. Furthermore, operations on object
fields are in some restricted ways inherited in the
operations on the object itself. The example below
should clarify this confusing concept.
Suppose the class PathName were defined as follows:
struct PathName
 {
 short vRefNum;
 String volName;
 int dirID;
 String dirName;
 String fileName;
 };

With this definition, unless they are overridden,
PathName will have predefined constructors,
destructors, and assignment operators. The default
PathName constructor will initialize all three Strings
in the PathName to null values. The default PathName
destructor will deallocate all three Strings. Finally,
assigning one PathName object to another will call the
String assignment operator on all three Strings,
allowing the reference counts to be adjusted
properly. The benefits of C++ show up once again
here, in that types using garbage-collected fields
automatically inherit the benefits of garbage
collection.

The Value Class
The two forms of inheritance mentioned in the
previous subsection permit simple development of
large collections of classes, all inheriting from a small
garbage-collection kernel. The TMON 3.0 Value class
is one of the best examples of the power of this
approach. A TMON 3.0 Value is anything that can be
stored in a TMON variable—an integer, a floating
point number, a String, an unlimited-length block of
bytes, a TMON error code, a TMON type, or a delayed
expression consisting of a function applied to

13

14
other Values. The last variant is the most interesting
—the function can be any of TMON's arithmetic
operators or functions, while the Values can
themselves be delayed expressions, allowing delayed
expressions to be built of arbitrary complexity. The
declaration of a TMON Value is sketched below10.
enum ValKind
{anError,aDelay,anInteger,aFloat,aDatum,
aString,aType};

class Value
 {
private:
 ValKind kind;
 short length;
 union {
 OSErr errorVal;
 int intVal;
 Type *typeVal;
 float fSingle;
 double fDouble;
 extended fExtended;
 extended10 fExtended10;
 extended12 fExtended12;
 String stringVal;
 Block blockVal;
 struct {
 Function f;
 class HValue **args[maxArgs];
 } delayedVal;
 };

public:
 //Constructors
 Value();
 Value(const Value &);
 Value(int);
 Value(extended);
 Value(const String &);

 //Destructor
 ~Value();

 //Assignment
 Value &operator=(const Value &);

 //Operations
 bool operator==(const Value &) const;

 void neg();
 void logNot();
 //...
 void operator+=(const Value &arg1);
 void operator-=(const Value &arg1);
 //...

 //Evaluate delayed Value.
 Value force() const;
 //Compile delayed Value to 68000 code.
 CompiledValue compile() const;

 //Print Value to standard output.
 void print() const;
 };

class HValue:Value
 {
 int refCount;
 };

Discussion

1
HValue

D3
refCount

HValue

*
refCount 2

HValue

D0
refCount 2

1
HValue

7
refCount

Value
+x v

Value
+

HValue

+
refCount 1

HValue

$10
refCount 1

1
HValue

D3
refCount

HValue

*
refCount 2

HValue

D0
refCount 2

1
HValue

7
refCount

Value
+x v

Value
+

10The declaration actually used in TMON 3.0 is slightly different due to a few pesky “features” of the C++ language.
14

15
Note the flexibility of the design of the Value class.
Suppose that v and w are Values. To add w to v, one
would simply write v+=w. To add the number $10 to
v, one would use v+=$10; the

15

16
$10 is automatically coerced to an integer Value. If v
happened to contain the integer $40800000 before
this addition, it would now contain $40800010. On
the other hand, if v and x both contained the delayed
expression ∆D0+D3*7, v would now contain
∆D0+D3*7+$10, as shown in the figure above.

TMON functions need not handle delayed expressions
specially. When a function returns, the Value
destructor is called to automatically update the
reference counts and deallocate storage of Values
that were stored in its local variables. The same
thing happens when a structure containing Values is
disposed. When a complicated Value is deallocated,
it recursively deallocates its components. Copying
Values and passing them as parameters are both
efficient—a small structure is copied and one
reference count updated.

Summary
The C++ inheritance capabilities permit one to write
a few garbage-collecting classes and then use them
to define entire hierarchies of objects that
automatically initialize, keep track, and dispose of
themselves. Thus, the safety-critical garbage
collection logic can be limited to a small part of the
program. Other classes can be easily designed
without introducing handle dereferencing or
deallocation problems. This combination of features
saved a large amount of time in the development of
TMON 3.0. Without these capabilities, even after
months of debugging, I would not have found all of
the errors in TMON's Value management; moreover,
making modifications to TMON would have become
virtually impossible due to the constant peril of
missing a garbage collection reference or
deallocating something twice.
My experiences in this area are not unique. Stephen
Wolfram, in writing his symbolic manipulation
program Mathematica [13], found it easier to
implement and use a new language built on top of C
than to try to write the program directly and struggle
to find all of the storage allocation bugs. Fortunately,
nowadays it is possible to achieve the same goal by
using C++ instead of implementing an entirely new
language.

6. Conclusion

The Good News
In this paper I presented four C++ capabilities that
allow programmers to design sophisticated, self-
contained types: convenient and efficient type
operation syntax, type constructors and destructors,
garbage collection, and inheritance. With these
capabilities it is now possible to design efficient and
robust types that virtually eliminate entire classes of
program bugs such as storage deallocation or handle
dereferencing errors. In addition to saving
considerable debugging time, these capabilities free
programmers to concentrate on higher-level
considerations in their programs and make it much
easier to modularize programs. It is also possible to
use the concepts described here to write efficient,
reusable modules of code.

The Bad News
Unfortunately, the productivity gains described in
this paper do come at a price. To realize these gains,
one must learn the advanced capabilities of C++,
and one must commit to using C++ throughout the
entire program. It is difficult to mix “advanced” C++
code with code written in other languages, although
it is possible to do so if one is extremely careful.

Commitment
The use of C++'s advanced features in a project
implies a commitment to use C++ throughout the
project. It is not possible to mix C++ with other
languages such as (Object) Pascal, C, or assembly at
a high level while still realizing the benefits of the
capabilities described in this paper. Of course, one
can mix C++ with (Object) Pascal, C, or assembly at
a low level, but one cannot pass objects with
constructors, destructors, and virtual functions
across language boundaries without exercising
considerable care11. Thus, although TMON 3.0 is
written half in C++ and half in assembly language,
the assembly language half is almost exclusively
concerned with low-level functioning of TMON.
Objects such as Strings and Values are almost
never passed to assembly language routines.

11MPW C++ does contain a compatibility hack to let it share virtual functions with Object Pascal; unfortunately, some of C++'s advantages are
lost when this is done.

16

17
For this reason, any future user areas and extensions
to TMON must also be written in C++.

Potential for Abuse
It is easy to abuse C++. C++ will let one redefine
the comma operator to perform addition, use * to
mean “print”, and give the same name to three
completely unrelated functions; all of these can be
extremely useful in utterly confounding anyone who
subsequently tries to read or modify the program.
Moreover, in group projects it is easy for several
people to simultaneously develop their own
hierarchies of utility classes, producing needlessly
large and complicated programs12.
C++ works best for programmers who are familiar
with the concepts of abstraction (information hiding).
In team projects involving programmers not familiar
with abstraction, I found that problems arose with
abstractions being broken, resulting in eventual bugs
and unmaintainability of the program13. On the other
hand, team projects in which abstractions were
followed went smoothly. C++ helps in this regard by
providing for hiding instance variables, but these
provisions will not deter a programmer working
against a schedule from breaking an abstraction.

Future Evolution
C++ is not yet a complete language, and some
capabilities are sorely needed. The most urgently
needed facilities are type polymorphism, exception
handling, and support for fine-grain concurrency,
locking, and simple atomic transactions14. Many
modern programming languages, including Ada [1],
Common Lisp [9], and Modula-3 [2] provide good
support for at least the first two; yet, even C++ is
still in the stone age by providing no support in these
areas. In the development of TMON I was forced to
use ad hoc mechanisms to implement these
capabilities—I used return codes to simulate
exception handling and extensive type coercions to
simulate polymorphic types. Neither solution is
satisfactory, though, and implementing these
kludges caused numerous bugs in addition to making
TMON hard to modify. Fortunately, Bjarne Stroustrup
is working on correcting these difficulties, and we can

12One solution sometimes adopted to solve this problem is to appoint an “object czar,” but this solution, if done improperly, will introduce more
bureaucracy than it is worth.
13Nevertheless, my problems are minor compared with Apple's difficulties with developers sneaking behind the system software abstraction
barrier. However, to be fair, some of the blame belongs on Apple for either not providing sufficient functionality in the system software
interface for developers to do their jobs or for leaving bugs in the operating system requiring breaking the system software abstraction to work
around them.
14Some of the latter three could be provided by libraries, but better definitions of the language's semantics are needed for portability;
otherwise, concurrent programs will not be portable from one C++ implementation to another.

17

18
look forward to new and improved releases of C++ in
the future.

Summary
C++ is like a power tool, where C and Object Pascal
are like hand tools. To someone experienced with C+

+, it can be a tremendous time-saver. However,
someone just starting to use a power tool such as C+
+ should be careful. It is easy to forget to use the
proper guards and injure oneself until one learns the
safety rules. When starting with C++, I recommend
following a C++ safety manual such as Apple's style
guide [3], also found in an appendix of the MPW C++
manual [7].

18

19

A. Sample Complex Library Declarations
Portions of a possible declaration of the C and C++ complex.h libraries are sketched below. See the MPW complex.h
interface file for the full version.
C:
struct complex {
 extended re,im;
 };

typedef struct complex complex;

//Arithmetic operations
complex cadd(complex, complex);
complex csub(complex, complex);
complex cmul(complex, complex);
complex cdiv(complex, complex);

//Functions
complex csqrt(complex);
...

C++:
struct complex {
private:
 //Private variables and functions cannot be accessed outside the complex class.
 extended re,im;

public:
 //Constructors
 //Since the definitions are given here, the code will be automatically inlined.
 complex()
 {}
 complex(extended r)
 {re=r; im=0.0;}
 complex(extended r, extended i)
 {re=r; im=i;}

 //Operators
 complex operator+(complex);
 complex operator-(complex);
 complex operator*(complex);
 complex operator/(complex);
 ...

 //Functions
 friend complex sqrt(complex);
 ...
 };

//Inline definitions of simple operators and functions must be present in the declaration.
inline complex::operator+(complex z)
 {
 return complex(re+z.re,im+z.im);
 }
...

19

20

B. String Class Declaration
This appendix contains the declaration of the String class and library described in section 4. The definition of
this class is given in the next appendix.
HString.h:
// Copyright 1990 Waldemar Horwat.
// Permission is granted for noncommercial use of this code.

typedef int bool;

struct StringData:HandleObject
 {
 int refCount;
 char str[1]; //Variable length
 };

class String
 {
private:
 StringData *data; // May be NIL!

 void internalCopy(const String &src);
 OSErr internalCopy(const char *cString);
 OSErr fresh();

public:
 // Cumulative error.
 static OSErr err;

 // Constructors
 String() {data=0;}
 String(const String &src) {internalCopy(src);}
 String(const char *cString) {internalCopy(cString);}

 // Destructor
 ~String();

 // Clear the String to a null string.
 void clear();

 // Assignment operators
 String &operator=(const String &src);
 OSErr operator=(const char *cString);

 // Query functions.
 int length() const;
 char operator[](int index) const;
 String substr(int offset, int length) const;
 //Result may move when heap is scrambled!
 char *cString() const;

 bool operator==(const String &src2) const;

 // Concatenation
 String operator|(const String &src) const;

 // Appending data to the end
 OSErr operator|=(const String &src);
 OSErr operator|=(char ch);

20

21
 OSErr operator|=(char *cString);
 // Prepending data to the beginning
 OSErr operator^=(char ch);
 OSErr operator^=(char *cString);
 };

C. String Class Definition
This appendix contains the definition of the String class and library described in section 4. The declaration of
this class is given in the previous appendix.
HString.c:
// Copyright 1990 Waldemar Horwat.
// Permission is granted for noncommercial use of this code.

#include <Types.h>
#include <Memory.h>
#include <OSUtils.h>
#include <String.h>
#include <Errors.h>
#include "HString.h"

OSErr String::err=0;

/*——*/
/* Copy src to this without deallocating whatever was in this previously. */
/*——*/
void String::internalCopy(const String &src)
 {
 if (data=src.data) data->refCount++;
 }

/*——*/
/* Copy cString to this without deallocating whatever was in this previously. */
/*——*/
OSErr String::internalCopy(const char *cString)
 {
 int length=strlen(cString);

 if (data=(StringData *)NewHandle(length+5))
 {
 data->refCount=1;
 BlockMove(Ptr(cString),data->str,length+1);
 return 0;
 }
 return String::err=memFullErr;
 }

21

22
/*——*/
/* Make sure that this String's data is not shared with any other String. This */
/* function should be called before this String's data is altered. */
/*——*/
OSErr String::fresh()
 {
 OSErr err;

 if (!data || data->refCount<=1) return 0;
 StringData *data2=data;
 if (err=HandToHand((Handle *)&data2)) return String::err=err;
 data->refCount--;
 data2->refCount=1;
 data=data2;
 return 0;
 }

/*——*/
/* Deallocate this String. Deallocate the data too if its reference count reaches */
/* zero. */
/*——*/
String::~String()
 {
 if (data && !(--data->refCount))
 DisposHandle(Handle(data));
 }

/*——*/
/* Clear this String to a null string. */
/*——*/
void String::clear()
 {
 this->String::~String();
 data=0;
 }

/*——*/
/* Assign src to this. Deallocate the old String in this. */
/*——*/
String &String::operator=(const String &src)
 {
 if (this!=&src) //Handle a String assigned to itself correctly!
 {
 this->String::~String();
 internalCopy(src);
 }
 return *this;
 }

/*——*/
/* Assign the cString to this. Deallocate the old String in this. */
/*——*/
OSErr String::operator=(const char *cString)
 {
 this->String::~String();
 return internalCopy(cString);
 }

22

23
/*——*/
/* Return the length of this String. */
/*——*/
int String::length() const
 {
 if (!data) return 0;
 return strlen(data->str);
 }

/*——*/
/* Return the character at position index in this String. Return the null character if */
/* index is out of bounds. */
/*——*/
char String::operator[](int index) const
 {
 if (!data || index<0 || index>=strlen(data->str)) return 0;
 return data->str[index];
 }

/*——*/
/* Return the substring of the given length starting from the given offset. The null */
/* string is returned if the offset is out of bounds. The String returned may be */
/* shorter than length characters if offset+length exceeds the length of this String. */
/*——*/
String String::substr(int offset, int length) const
 {
 String result; //Defaults to null.
 int thisLength=String::length();

 if (offset>=0 && offset<thisLength)
 {
 if (offset+length>=thisLength) length=thisLength-offset;
 if (result.data=(StringData *)NewHandle(length+5))
 {
 result.data->refCount=1;
 BlockMove(data->str+offset,result.data->str,length);
 result.data->str[length]='\0';
 }
 }
 return result;
 }

/*——*/
/* Return the contents of this String as a C string. The result may move the next time */
/* memory is allocated! */
/*——*/
char *String::cString() const
 {
 if (!data) return "";
 return data->str;
 }

/*——*/
/* Return true if the Strings are exactly equal. */
/*——*/
bool String::operator==(const String &src2) const
 {
 if (!data || !src2.data)
 return length()==src2.length();
 return !strcmp(data->str,src2.data->str);
 }

23

24

/*——*/
/* Concatenate this and src to yield a new String. */
/*——*/
String String::operator|(const String &src) const
 {
 String result=*this;
 result|=src;
 return result;
 }

/*——*/
/* Destructively concatenate src to the end of this. */
/*——*/
OSErr String::operator|=(const String &src)
 {
 OSErr err;

 int srcLength=src.length();
 if (!srcLength) return 0; // Nothing to concatenate?
 if (!data)
 {
 internalCopy(src);
 return 0;
 }
 if (err=fresh()) return err;
 SetHandleSize(Handle(data),GetHandleSize(Handle(data))+srcLength);
 if (err=MemError()) return String::err=err;
 strcat(data->str,src.data->str);
 return 0;
 }

/*——*/
/* Destructively concatenate ch to the end of this. */
/*——*/
OSErr String::operator|=(char ch)
 {
 char cString[2];

 cString[0]=ch;
 cString[1]='\0';
 return *this|=cString;
 }

/*——*/
/* Destructively concatenate cString to the end of this. */
/*——*/
OSErr String::operator|=(char *cString)
 {
 OSErr err;

 int srcLength=strlen(cString);
 if (!srcLength) return 0; // Nothing to concatenate?
 if (!data)
 {
 internalCopy(cString);
 return 0;
 }
 if (err=fresh()) return err;
 SetHandleSize(Handle(data),GetHandleSize(Handle(data))+srcLength);

24

25
 if (err=MemError()) return String::err=err;
 strcat(data->str,cString);
 return 0;
 }

/*——*/
/* Destructively concatenate ch to the beginning of this. */
/*——*/
OSErr String::operator^=(char ch)
 {
 char cString[2];

 cString[0]=ch;
 cString[1]='\0';
 return *this^=cString;
 }

/*——*/
/* Destructively concatenate cString to the beginning of this. */
/*——*/
OSErr String::operator^=(char *cString)
 {
 OSErr err;

 int srcLength=strlen(cString);
 if (!srcLength) return 0; // Nothing to concatenate?
 if (!data)
 {
 internalCopy(cString);
 return 0;
 }
 if (err=fresh()) return err;
 Size dataSize=GetHandleSize(Handle(data));
 SetHandleSize(Handle(data),dataSize+srcLength);
 if (err=MemError()) return String::err=err;
 BlockMove(data->str,data->str+srcLength,dataSize-4);
 BlockMove(cString,data->str,srcLength);
 return 0;
 }

D. StringSample Code
This appendix contains an MPW tool that illustrates the use of the String class. The tool is described in a bit
more detail in section 4.
StringSample.make:
StringSample ƒ StringSample.c.o HString.c.o
 Link -c 'MPS ' -t MPST ∂
 StringSample.c.o HString.c.o ∂
 "{CLibraries}"CPlusLib.o ∂
 "{CLibraries}"StdCLib.o ∂
 "{CLibraries}"CInterface.o ∂
 "{CLibraries}"CRuntime.o ∂
 "{Libraries}"Interface.o ∂
 -o StringSample

HString.c.o ƒ HString.c HString.h
 CPlus HString.c
StringSample.c.o ƒ StringSample.c HString.h
 CPlus StringSample.c

25

26

StringSample.c:
// Copyright 1990 Waldemar Horwat.
// Permission is granted for noncommercial use of this code.

#include <Types.h>
#include <Memory.h>
#include <Errors.h>
#include <stdio.h>
#include "HString.h"

/*——*/
/* Split the path name in pathName into the volume name (without the colon) that is */
/* stored in volumeName and everything following it, which is stored in */
/* partialPathName. A colon is prepended to partialPathName if it didn't already have */
/* one. Both volumeName and partialPathName may be nil, in which case they are not */
/* returned. Both volumeName and partialPathName can alias with pathName. */
/*——*/
OSErr splitVolumeName(const String &pathName, String *volumeName, String *partialPathName)
 {
 String::err=0;
 int length=pathName.length();

 for (int i=0; i<length && pathName[i]!=':'; i++);
 if (i==length)
 {
 if (volumeName) volumeName->clear();
 if (partialPathName)
 {
 *partialPathName=pathName;
 (*partialPathName)^=':';
 }
 }
 else
 {
 String pathName2=pathName;
 if (volumeName) *volumeName=pathName2.substr(0,i);
 if (partialPathName) *partialPathName=pathName2.substr(i,length-i);
 }
 return String::err;
 }

/*——*/
/* Split the path name in partialPathName into the last name (optionally followed by a */
/* colon, which is removed) that is stored in fileName and everything preceding it, */
/* which is stored in dirName. Both fileName and dirName may be nil, in which case */
/* they are not returned. Both fileName and dirName can alias with partialPathName. */
/*——*/
OSErr splitPartialPathName(const String &partialPathName, String *dirName, String *fileName)
 {
 String::err=0;
 OSErr err=0;
 String partialPathName2=partialPathName;
 int length=partialPathName2.length();

 if (length && partialPathName2[length-1]==':') length--;
 if (!length) err=bdNamErr;
 else
 {
 for (int i=length; i>0; --i)
 if (partialPathName2[i-1]==':') break;
 if (dirName) *dirName=partialPathName2.substr(0,i);

26

27
 if (fileName) *fileName=partialPathName2.substr(i,length-i);
 }
 if (!err) err=String::err;
 return err;
 }

OSErr parseFile(char *pathNameStr)
 {
 printf("\"%s\":\n",pathNameStr);

 String::err=0;
 String pathName=pathNameStr;
 OSErr err=String::err;
 String volumeName;
 String partialPathName;
 String fileName;

 if (!err)
 {
 err=splitVolumeName(pathName,&volumeName,&partialPathName);
 if (!err)
 {
 // I am not sure this is right; printf could allocate memory?
 printf(" VolumeName=\"%s\"\n",volumeName.cString());
 while (partialPathName.length())
 {
 err=splitPartialPathName(partialPathName,&partialPathName,&fileName);
 if (err)
 {
 if (err==bdNamErr) err=0;
 break;
 }
 printf(" DirName=\"%s\"; FileName=\"%s\"\n",
 partialPathName.cString(),fileName.cString());
 }
 }
 }
 return err;
 }

void main(int argc, char **argv)
 {
 int i;

 for (i=1; i<argc; i++)
 {
 OSErr err=parseFile(argv[i]);
 if (err) printf("(Error $%X)\n",err);
 printf("\n");
 }
 }

27

28

Bibliography
[1] Serafino Amoroso and Giorgio Ingargiola. Ada: An Introduction to Program Design and Coding.
Howard W. Sams & Co., Marshfield, MA, 1985.
[2] Luca Cardelli, et al. Modula-3 Report. Olivetti Research Center/DEC report.
[3] David Goldsmith and Jack Palevich. “Unofficial C++ Style Guide.” Develop, Issue 2, April 1990.
[4] Waldemar Horwat. “Parallel Processing Paradigms.” MacHack '89.
[5] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Second Edition. Prentice
Hall, 1988.
[6] Andrew Koenig. “Associative Arrays in C++.” Proceedings of Summer USENIX '88.
[7] Macintosh Programmer's Workshop 3.1 C++ Reference Manual. Apple Computer, Inc., 1990.
[8] Donn Seeley. “A Tour of the Worm.” Proceedings of Winter USENIX '89.
[9] Guy L. Steele. Common Lisp: The Language, Second Edition. Digital Press, Digital Equipment
Corporation, 1990.
[10] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, Cambridge, MA, 1986.
[11] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1987.
[12] Bjarne Stroustrup. “The Evolution of C++: 1985 to 1989.” Included as documentation with AT&T and
MPW C++ compilers.
[13] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley,
1988.

28

